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Abstract
We construct Poisson structures for Ermakov systems using the Ermakov
invariant as the Hamiltonian. Two classes of Poisson structures are obtained,
one of them is degenerate, in which case we derive the Casimir functions.
In some situations, the existence of Casimir functions can give rise to
superintegrable Ermakov systems. Finally, we characterize the cases where
linearization of the equations of motion is possible.

PACS numbers: 45.20.Jj, 05.45.−a, 11.30.−j

1. Introduction

Ermakov systems [1–3] have attracted attention due to both their important physical
applications and mathematical properties. A central mathematical property of Ermakov
systems is the existence of a constant of motion, the Ermakov invariant. The Ermakov
invariant allows us to construct a nonlinear superposition law linking the solutions of the
equations of motion composing the Ermakov system [4]. Ermakov systems have recently been
of interest in diverse scenarios, such as accelerator physics [5], dielectric planar waveguides
[6], cosmological models [7, 8], analysis of supersymmetric families of Newtonian free
damping modes [9], study of open fermionic systems [10], analysis of the propagation
of electromagnetic waves in one-dimensional inhomogeneous media [11], algebraic
approach to integrability of nonlinear systems [12], coupled linear oscillators [13], the
semiclassical limit of quantum mechanics [14], supersymmetric quantum mechanics [15],
computation of geometrical angles and phases for nonlinear systems [16–18], search for
Noether [19, 20] and Lie [21, 22] symmetries, the possible linearization of the system [23, 24],
extension of the Ermakov system concept [21, 25–27], the search for additional constants of
motion [28] and some discretizations of Ermakov systems [29, 30].

The existence of a Hamiltonian or Lagrangian formulation is a central question for
any dynamical system. Cerveró and Lejarreta [31] have identified a Hamiltonian subclass
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of Ermakov systems and used this Hamiltonian formulation as the starting point for the
quantization of these systems. Later, Haas and Goedert extended the class of Hamiltonian
Ermakov systems by inclusion of frequency functions depending not only on time, but on
dynamical variables as well [32]. Both Hamiltonian formulations for Ermakov systems are
canonical formulations, for which the Poisson bracket is defined in the conventional way. On
the other hand, non-canonical, or generalized Hamiltonians, or Poisson descriptions, have
proved to be relevant in such diverse fields like magnetohydrodynamics, kinetic models in
plasma physics, biological models, optics, quantum chromodynamics and so on [33]. There is
a wide range of possibilities open when a Poisson formulation is available, such as nonlinear
stability analysis through the energy-Casimir method, perturbation methods, integrability
results and bifurcation properties [33]. Accordingly, in recent years there has been interest
in constructing Poisson structures [34–41], mainly for the special case of three-dimensional
dynamical systems.

A finite-dimensional dynamical system is said to be a generalized Hamiltonian system
when it can be cast in the form

ẋµ = Jµν∂νH µ = 1, . . . , N (1)

where sum convention is assumed and ∂µ = ∂/∂xµ. Here, H = H(x) is the Hamiltonian
function and Jµν = Jµν(x) is the Poisson matrix for the system. The Poisson matrix must
be skew symmetric, Jµν = −J νµ. Moreover, it must satisfy the following set of partial
differential equations:

Jµν∂νJ
ρσ + J ρν∂νJ σµ + J σν∂νJ µρ = 0. (2)

These equations ensure that the generalized Poisson bracket, defined as

{A,B} = ∂µAJ
µν∂νB (3)

for any functions A = A(x) and B = B(x), satisfies the Jacobi identity

{A, {B,C}} + {B, {C,A}} + {C, {A,B}} = 0. (4)

In fact, equations (2) are a necessary and sufficient condition for the bracket (3) to satisfy the
Jacobi identity. Hereafter we refer to (2) as the ‘Jacobi identities’ too. The above-generalized
Poisson brackets are endowed with all properties of conventional Poisson brackets, with the
advantage of being applicable to more general systems.

From the definition, we can identify the basic building blocks of any Poisson formulation
as being the Hamiltonian function and the Poisson matrix. If a time-independent constant
of motion is known, the idea is trying to use it as the Hamiltonian function for the system.
In other words, we can look at (1) in a reverse way, as a set of equations for some of the
components of the Poisson matrix. Then, for given ẋµ and H, system (1) is an undetermined
linear system for the matrix elements Jµν . Besides being skew symmetric, the Poisson
matrix must comply with the Jacobi identities (2), which constitute an overdetermined system
of partial differential equations for the remaining components Jµν not fixed by (1). This
‘deductive schema’ for constructing Poisson structures was developed in detail in [41], and
applied to three-dimensional dynamical systems such as Lotka–Volterra systems for three
interacting populations, the Rabinovich system and the Rikitake dynamo model [40]. The
basic proposition of the present study is to put forward the approach of [41] to find new classes
of Ermakov systems for which a Hamiltonian formalism is possible. We use the only time-
independent constant of motion always available for Ermakov systems, namely the Ermakov
invariant, as the Hamiltonian function and check the consequences of this assumption. This
idea is partly inspired by the results of [42], where it was shown that (n + 1)-dimensional
extensions of Ermakov systems, when restricted to the unit sphere Sn, can sometimes be
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viewed as canonical Hamiltonian systems with the Ermakov invariant playing the role of
Hamiltonian. Here, however, there is no restriction to any particular submanifold, and we
focus on non-canonical descriptions. Finally, note that Ermakov systems are non-autonomous
four-dimensional dynamical systems, in contrast to the earlier studies [40, 41] focused on
three-dimensional models.

The paper is organized as follows. In section 2, we set the Hamiltonian for Ermakov
systems as the Ermakov invariant, and seek a Poisson matrix complying with the Jacobi
identities. In this way, we arrive at two classes of Ermakov systems admitting Poisson
structures, analysed in detail in section 3. In section 4, we examine the possibility of applying
linearization transforms to the resulting Ermakov systems with Poisson character. Section 5
is dedicated to our final remarks.

2. Poisson structures

Classical Ermakov systems are commonly written in the form

ẍ + ω2x = 1

yx2
f (y/x) (5)

ÿ + ω2y = 1

xy2
g(x/y) (6)

where f and g are arbitrary functions of the indicated variables andω is an arbitrary frequency
function. In most applications, ω is restricted to be dependent on time only, but here this
constraint is relaxed.

For our purposes, polar coordinates r = (x2 + y2)1/2 and θ = arctan(y/x) are more
appropriate. Ermakov systems in polar coordinates read

r̈ − rθ̇
2

+ ω2r = 1

r3
F(θ) (7)

rθ̈ + 2ṙ θ̇ = − 1

r3
G(θ) (8)

where F and G, which depend only on the angle variable, are arbitrary functions suitably
related to f and g, respectively. The main property of Ermakov systems is that they always
possess a constant of motion, the Ermakov invariant,

I = 1

2
(r2θ̇ )2 +

∫ θ

G(λ) dλ. (9)

As manifest by (9), the existence of I is not affected by any particular dependence of the
dynamical variables on ω. Also, a little thought shows that for frequency functions depending
on dynamical variables we can set F ≡ 0 in equation (7) without any loss of generality.
However, we keep F mainly for easy comparison with previous results on Ermakov systems.

We want to reformulate our Ermakov system (7)–(8) as a generalized Hamiltonian system
as in (1), with all indices running from 1 to 4 since the Ermakov system is a system of two
second-order ordinary differential equations. The Poisson matrix Jµν is skew symmetric and
should satisfy the following system of partial differential equations:

Jµ1∂µJ
23 + Jµ2∂µJ

31 + Jµ3∂µJ
12 = 0 (10)

Jµ1∂µJ
24 + Jµ2∂µJ

41 + Jµ4∂µJ
12 = 0 (11)

Jµ1∂µJ
34 + Jµ3∂µJ

41 + Jµ4∂µJ
13 = 0 (12)

Jµ2∂µJ
34 + Jµ3∂µJ

42 + Jµ4∂µJ
23 = 0. (13)
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If time-independent, the Hamiltonian H is a constant of motion. The only time-
independent constant of motion always available for Ermakov systems, no matter the functions
F, G and ω, is the Ermakov invariant. Hence it is natural to define

H = I (14)

and see the consequences.
The choice of coordinates xµ is a matter of convenience. Here, we choose

(x1, x2, x3, x4) = (r, θ, u, v) (15)

where

u = ṙ v = r2θ̇ . (16)

The Ermakov system viewed as a first-order system then reads

ṙ = u (17)
θ̇ = v/r2 (18)
u̇ = −ω2r + (v2 + F(θ))/r3 (19)
v̇ = −G(θ)/r2. (20)

Using the Ermakov invariant as the Hamiltonian

H = v2

2
+

∫ θ

G(λ) dλ (21)

there results, from (1) and (17)–(19), that

u = J 12G(θ) + J 14v (22)
v/r2 = J 24v (23)
−ω2r + (v2 + F(θ))/r3 = J 32G(θ) + J 34v. (24)

Equation (20) follows automatically from Ḣ = 0 and the skew symmetry of Jµν (see [41] for
details).

Let us look more closely at the system (22)–(24). Equation (24) can be viewed as the
definition of ω, while equation (22) shows that setting J 12 = 0 eliminates G(θ) from all
considerations.

This is a convenient choice, and still leads to a large class of examples. We found, after
long calculations, that it is very hard to impose the Jacobi identities when J 12 �= 0. Thus, in
what follows we set J 12 = 0, leavingG(θ) arbitrary and allowing for more general classes of
Ermakov systems.

Summing up results from (22)–(24) and our choice for J 12, we obtain

J 12 = 0 (25)

J 14 = u/v (26)

J 24 = 1/r2 (27)

ω2 = (v2 + F(θ))/r4 + (J 23G(θ)− J 34v)/r. (28)

Our goal now is to insert (25)–(27) into Jacobi identities and solve for the remaining
components of the Poisson matrix. With the solution, we can know what are the allowable
frequencies using (28).

The second Jacobi identity, equation (11), gives

J 23 = u

r2v
. (29)
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Inserting this and (25)–(27) into (10), we obtain

u
∂J 13

∂u
+ v

∂J 13

∂v
= J 13 − u2

v2
(30)

with solution

J 13 =
(u
v

)2
+ uψ

(u
v
, r, θ, t

)
. (31)

Here, ψ is an arbitrary function of the indicated arguments. Note that we have included
time-dependence for extra generality.

Substituting the already calculated components of the Poisson matrix into (13) gives

u
∂J 34

∂u
+ v

∂J 34

∂v
= J 34 +

2uv

r
ψ (32)

whose solution is

J 34 = 2uv

r
ψ

(u
v
, r, θ, t

)
+ uϕ

(u
v
, r, θ, t

)
(33)

where ϕ is an additional arbitrary function of the indicated arguments.
The only Jacobi identity still deserving attention is equation (12), which yields the

consistency condition

ψϕ′ − ψ ′ϕ = ∂ψ

∂r
+
v

r2u

∂ψ

∂θ
− 2

r
ψ (34)

where the prime denotes differentiation with respect to u/v. For ψ = 0, the consistency
condition (34) is satisfied in an immediate way leaving ϕ arbitrary. For ψ �= 0, a different
class of solutions arises.

These two possibilities and the associated Poisson structures are studied separately.

3. The two classes of solution

3.1. The case ψ = 0

For ψ = 0, the consistency condition (34) imposes no constraints on the function ϕ, which
remains arbitrary. From the results of the last section, we obtain the following Poisson matrix:

Jµν =




0 0 (u/v)2 u/v

0 0 u/(r2v) 1/r2

−(u/v)2 −u/(r2v) 0 uϕ

−u/v −1/r2 −uϕ 0


 (35)

where, as said previously, ϕ = ϕ(u/v, r, θ, t). By construction, this is a Poisson matrix.
Moreover, it is not of Lie–Poisson, affine-linear or quadratic type, as more usual [33].

The frequency function of the associated Ermakov system follows from (28),

ω2 = 1

r4
(v2 + F(θ)) +

u

r3v
G(θ)− uv

r
ϕ(u/v, r, θ, t). (36)

Using the frequency function as defined in (36) and the definitions of u and v in terms of the
original polar coordinates, we derive the following Ermakov system:

r̈ = − ṙ

r4θ̇
G(θ) + r2ṙ θ̇ϕ

(
ṙ

r2θ̇
, r, θ, t

)
(37)

rθ̈ + 2ṙ θ̇ = −G(θ)
r3

. (38)
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We see that the function F disappears from all considerations. By construction, (37)–(38) is
an Ermakov system having a Poisson formulation, with the Hamiltonian being the Ermakov
invariant and the Poisson matrix given by (35). This is an infinite family of Ermakov systems,
containing two arbitrary functions, G and ϕ. Also note that the frequencies given by (36)
cannot be functions of time only, necessarily having a dependence on the dynamical variables.

Here, the Poisson structure is degenerate, as can be readily seen by

det(J µν) = 0. (39)

Therefore, we can obtain Casimir functions, that is, functions which Poisson commute with
any function defined on phase space. The defining equations for the Casimir functions, denoted
by C, are

Jµν∂νC = 0. (40)

The existence of non-constant solutions is due to the degenerate character of the Poisson
structure.

There are systematic methods [43, 44] for obtaining the Casimirs, but here a direct
approach is sufficient. Using the Poisson matrix, we find the following equations for the
Casimirs:

u
∂C

∂u
+ v

∂C

∂v
= 0 (41)

1

r2

∂C

∂θ
+
u

v

∂C

∂r
+ uϕ

∂C

∂u
= 0. (42)

The first equation of this system shows that C do depend only on the variables (u/v, r, θ, t).
Taking into consideration this information, we transform equation (42) into

1

r2

∂C

∂θ
+ α

∂C

∂r
+ αϕ(α, r, θ, t)

∂C

∂α
= 0 (43)

where α = u/v. The solution for (43) strongly depends on the details of the function ϕ. Note
thatG(θ), the extra arbitrary function defining the Ermakov system, does not play any role in
the computation of the Casimirs.

An illuminating way to rewrite (43) is found by means of the change of coordinates

r̄ = 1/r θ̄ = θ ᾱ = −α. (44)

The equation for the Casimirs becomes

∂C

∂θ̄
+ ᾱ

∂C

∂r̄
+
ᾱ

r̄2
ϕ(−ᾱ, 1/r̄, θ̄ , t)

∂C

∂ᾱ
= 0. (45)

For θ̄ interpreted as an independent variable, r̄ as a coordinate and ᾱ as a velocity, this is
Liouville’s equation for the invariants of the equations of motion,

dr̄

dθ̄
= ᾱ

dᾱ

dθ̄
= ᾱ

r̄2
ϕ(−ᾱ, 1/r̄, θ, t) (46)

which are also the characteristic equations for (45). Note that here the physical time t is a
mere parameter.

Equations (46) are equivalent to the Newton equation for one-dimensional motion under
the force field ᾱϕ/r̄2. For functions ϕ yielding completely integrable examples of such
motions, we can find all the Casimirs for the Poisson structure (35). To show a concrete
example where this is possible, consider the case

ϕ = − r̄
2

ᾱ

dV

dr̄
(r̄, t) (47)
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for an arbitrary pseudo-potential V (r̄, t). In this case, Newton’s equation that follows from
(46) is

d2r̄

dθ̄2
= −dV

dr̄
(r̄, t) (48)

an autonomous potential system, since θ̄ does not appear explicitly. As for any autonomous
one-dimensional potential system,there is a complete integrability. The constants of motion are

C1 = 1

2

(
dr̄

dθ̄

)2

+ V (r̄, t) (49)

C2 = θ̄ − 1√
2

∫ r̄ dλ

(C1 − V (λ, t))1/2
(50)

respectively the energy and the additional integration constant for the equations of motion. In
terms of the original coordinates of the Poisson description, the quantities (49)–(50) are

C1 = 1

2

(u
v

)2
+ V (1/r, t) (51)

C2 = θ − 1√
2

∫ 1/r dλ

(C1 − V (λ, t))1/2
(52)

which are the Casimirs for the Poisson structure (35) when ϕ is given as in (47). When V
does not contain the time explicitly, the Casimirs become additional constants of motion for
the Ermakov system. In this case, we obtain a superintegrable [45] class of Ermakov systems,
possessing three invariants, namely the Ermakov invariant and the two Casimir functions. In
fact, we can derive superintegrable Ermakov systems in all cases when (45) can be solved in
closed form for the two Casimirs of the Poisson structure, and when ϕ is time-independent.

Finally, let us examine more closely the superintegrable Ermakov systems with the
Casimirs C1 and C2 given in (51)–(52), in the special situation for which ∂V/∂t = 0. Using
C2 as in (52) and the implicit function theorem, we locally obtain the equation for the orbits,
r = r(θ, C1, C2). Now, using the Ermakov invariant, we get the angle as a function of time
through the quadrature

t + k =
∫ θ r2(λ, C1, C2) dλ

h(λ, I)
(53)

where k is the last integration constant and

h(θ, I) =
√

2

(
I −

∫ θ

G(λ) dλ

)1/2

. (54)

Locally, (54) gives θ as a function of time and four integration constants, namely I, C1, C2

and k.
To show an example of the procedure, consider the particular case

V (r̄) = 1

2r̄2
(55)

for which (48) describes a singular oscillator. Using (47), the result is

ϕ = − r
3θ̇

ṙ
(56)
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and, from (37)–(38), we obtain the following Ermakov system:

r̈ = − ṙ

r4θ̇
G(θ)− r5θ̇2 (57)

rθ̈ + 2ṙ θ̇ = − 1

r3
G(θ). (58)

We left the function G(θ) undetermined. From the pseudo-potential (55) and the orbit
equation (52), we get

r2 = 2C1

1 + 4C2
1(θ − C2)2

(59)

which shows a spiral motion of a particle coming arbitrarily close to the origin. The time-
dependence of such motion is obtained from the quadrature (53), which depends on the details
of the functionG(θ).

3.2. The case ψ �= 0

For ψ �= 0, the consistency condition (34) has a different class of solutions,

ϕ =
(∫ u/v dλ

ψ2(λ, r, θ, t)

(
∂ψ

∂r
(λ, r, θ, t) +

1

r2λ

∂ψ

∂θ
(λ, r, θ, t) − 2

r
ψ(λ, r, θ, t)

)

+χ(r, θ, t)

)
ψ(u/v, r, θ, t) (60)

where χ is an arbitrary function of the indicated arguments. Therefore, we obtain the Poisson
structure

Jµν =




0 0 (u/v)2 + uψ u/v

0 0 u/(r2v) 1/r2

−(u/v)2 − uψ −u/(r2v) 0 uϕ + 2uvψ/r
−u/v −1/r2 −uϕ − 2uvψ/r 0


 (61)

withϕ specified in terms ofχ andψ according to (60). The Poisson structure is non-degenerate,

det(J µν) = u2ψ

r4

(
2u

v2
+ ψ

)
�= 0. (62)

The following frequency functions are derived from (28):

ω2 = 1

r4
(v2 + F(θ)) +

u

r3v
G(θ)− uv

r

(
ϕ(u/v, r, θ, t) + 2

v

r
ψ(u/v, r, θ, t)

)
(63)

which again necessarily depend on the dynamical variables. The resulting Ermakov
systems are

r̈ = − ṙ

r4θ̇
G(θ) + r2ṙ θ̇

(
ϕ

(
ṙ

r2θ̇
, r, θ, t

)
+ 2rθ̇ψ

(
ṙ

r2θ̇
, r, θ, t

))
(64)

rθ̈ + 2ṙ θ̇ = −G(θ)
r3

. (65)

These Ermakov systems contain three arbitrary functions, namely G, ψ and χ . Since the
Poisson structure is non-degenerate, there are no nontrivial Casimirs. Therefore, we found a
new class of Ermakov systems that can be cast in a non-degenerate generalized Hamiltonian
form.
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4. Linearization

Ermakov systems with frequency functions depending only on time are shown to be linearizable
[23] using

r̄ = 1/r (66)

as the in dependent variable and the angle θ as the independent one. This change of variables
is accomplished by the relation

θ̇ = h(θ, I)/r2 (67)

where h(θ, I) is defined in (54). In terms of r̄ , θ , the Ermakov systems transform into
a one-parameter family of second-order linear ordinary differential equations depending on
the value of the Ermakov invariant [23], whenever the frequency function does not contain
dynamical variables. This result was used for the analysis of the stability and periodicity of
some Ermakov systems arising in two-layer, shallow water wave theory [45]. The linearization
transform (66)–(67) was shown to be useful also for a class of Ermakov systems for which the
frequency function is not a mere function of time [24]. This result provides an explanation
why Kepler–Ermakov systems [47], a perturbation of conventional Ermakov systems, are
linearizable.

In view of the usefulness of the linearization transform (66)–(67) in several contexts, it
is interesting to check if it can also be possible for our classes of Ermakov systems admitting
Poisson formulations. For instance, applying (66)–(67) to the Ermakov system (37)–(38)
results

d2r̄

dθ2
= 1

r̄2

dr̄

dθ
ϕ

(
− dr̄

dθ
,

1

r̄
, θ, t

)
. (68)

For ∂ϕ/∂t �= 0, (68) becomes an integro-differential equation, a possibility we will not
consider here. Equation (68) is equivalent to equation (46), which determines the Casimirs
for the Poisson structure.

The term on the right-hand side of (68) has a linear character if and only if

1

r̄2

dr̄

dθ
ϕ

(
− dr̄

dθ
,

1

r̄
, θ, t

)
= A(θ)

dr̄

dθ
+ B(θ)r̄ + C(θ) (69)

for functions A, B and C depending only on the angle. If the assumption (69) is satisfied,
the Ermakov systems (37)–(38) fall in the class of linearizable Ermakov systems discussed
in [24]. Moreover, if (69) is valid, the characteristic equations (48) for the Casimirs are also
linear. This does not imply, of course, that the Casimirs may always be found in closed form
when (69) holds. Similar remarks apply to the linearization of our second class of Ermakov
systems admitting a Poisson formulation, treated in section 3.2.

5. Conclusion

In this paper we have proposed the Ermakov invariant as the Hamiltonian function and
reformulate the Ermakov system as a Poisson system. The main difficulty is to find a Poisson
matrix reproducing the equations of motion and, at the same time, being compatible with the
Jacobi identities. However, the task was achieved and two classes of the Poisson structures
were derived. One of them is degenerate, thus opening the possibility of constructing
Casimir invariants. These Casimirs, if time-independent, are also constants of motion.
In the cases where the Casimirs are time-independent and available in closed form, we
obtain superintegrable Ermakov systems. A class of such superintegrable Ermakov systems
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was explicitly shown in section 3.1. Another, non-degenerate, class of Ermakov systems
admitting generalized Hamiltonian formulation with the Ermakov invariant playing the role
of Hamiltonian function was also found. In this latter case, no Casimirs exist. Both classes of
Ermakov systems are specified by two arbitrary functions. All these considerations apply to
frequency functions having a dependence on the dynamical variables. Finally, the possibility of
linearization of the equations of motion was analysed in section 4. Interestingly, we found that
the determining equations for the Casimirs are linear when the associated Ermakov systems
are linearizable through (66)–(67).
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